Artificial Intelligence Computing Leadership from NVIDIA
M10 vGPU 8Q profile on Linux -- unable to create CUDA profile; code 999
Hi all, Nvidia-smi on guest: [code] +-----------------------------------------------------------------------------+ | NVIDIA-SMI 430.63 Driver Version: 430.63 CUDA Version: 10.1 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GRID M10-8Q On | 00000000:00:0A.0 Off | N/A | | N/A N/A P8 N/A / N/A | 583MiB / 8192MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 711 G /usr/lib/xorg/Xorg 55MiB | +-----------------------------------------------------------------------------+ [/code] Nvidia-smi on host says: [code] +-----------------------------------------------------------------------------+ | NVIDIA-SMI 430.67 Driver Version: 430.67 CUDA Version: N/A | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla M10 On | 00000000:03:00.0 Off | N/A | | N/A 34C P8 10W / 53W | 13MiB / 8191MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 1 Tesla M10 On | 00000000:04:00.0 Off | N/A | | N/A 38C P8 10W / 53W | 11MiB / 8191MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 2 Tesla M10 On | 00000000:05:00.0 Off | N/A | | N/A 44C P8 10W / 53W | 11MiB / 8191MiB | 0% Default | +-------------------------------+----------------------+----------------------+ | 3 Tesla M10 On | 00000000:06:00.0 Off | N/A | | N/A 43C P8 10W / 53W | 8141MiB / 8191MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 3 26990 C+G vgpu 8128MiB | +-----------------------------------------------------------------------------+ [/code] When I try to run anything of tests from CUDA toolkit, I got an error: ~$ ./EGLStream_CUDA_Interop Found 1 cuda devices Found EGL-CUDA Capable device with CUDA Device id = 0 Created EGLStream 0x55cd70ab2911 EGLStream initialized CUDA Producer on GPU Device 0: "GRID M10-8Q" with compute capability 5.0 failed to create CUDA context (0x3E7) &&&& EGLStream interop test FAILED At first test run, there is a log in dmesg: [43311.987240] nvidia-uvm: Loaded the UVM driver in 8 mode, major device number 240 I tried more recent driver versions but no luck, so is it with P100 12GB too. Where am I wrong? Can I somehow get more detailed debug? Thank you in advance!
Hi all,

Nvidia-smi on guest:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 430.63 Driver Version: 430.63 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GRID M10-8Q On | 00000000:00:0A.0 Off | N/A |
| N/A N/A P8 N/A / N/A | 583MiB / 8192MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 711 G /usr/lib/xorg/Xorg 55MiB |
+-----------------------------------------------------------------------------+

Nvidia-smi on host says:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 430.67 Driver Version: 430.67 CUDA Version: N/A |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla M10 On | 00000000:03:00.0 Off | N/A |
| N/A 34C P8 10W / 53W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla M10 On | 00000000:04:00.0 Off | N/A |
| N/A 38C P8 10W / 53W | 11MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla M10 On | 00000000:05:00.0 Off | N/A |
| N/A 44C P8 10W / 53W | 11MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla M10 On | 00000000:06:00.0 Off | N/A |
| N/A 43C P8 10W / 53W | 8141MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 3 26990 C+G vgpu 8128MiB |
+-----------------------------------------------------------------------------+


When I try to run anything of tests from CUDA toolkit, I got an error:

~$ ./EGLStream_CUDA_Interop
Found 1 cuda devices
Found EGL-CUDA Capable device with CUDA Device id = 0
Created EGLStream 0x55cd70ab2911
EGLStream initialized
CUDA Producer on GPU Device 0: "GRID M10-8Q" with compute capability 5.0

failed to create CUDA context (0x3E7)
&&&& EGLStream interop test FAILED

At first test run, there is a log in dmesg:

[43311.987240] nvidia-uvm: Loaded the UVM driver in 8 mode, major device number 240

I tried more recent driver versions but no luck, so is it with P100 12GB too.

Where am I wrong? Can I somehow get more detailed debug?

Thank you in advance!

#1
Posted 03/30/2020 05:05 PM   
Hi Has the VM picked up a license ok? Regards MG
Hi

Has the VM picked up a license ok?

Regards

MG

#2
Posted 03/30/2020 05:27 PM   
No, it hasn't. But is active license mandatory for CUDA to work? I could get similar configuration working in beginning of this year -- since I use nvenc, I remember that just image was choppy (3fps) but there weren't problems with CUDA. nvidia-smi dmon showed encoder usage. I just can't figure out what changed since then :(
No, it hasn't. But is active license mandatory for CUDA to work? I could get similar configuration working in beginning of this year -- since I use nvenc, I remember that just image was choppy (3fps) but there weren't problems with CUDA. nvidia-smi dmon showed encoder usage. I just can't figure out what changed since then :(

#3
Posted 03/30/2020 05:47 PM   
Hi [quote=""]No, it hasn't. But is active license mandatory for CUDA to work?[/quote] License the Software and see if that helps. Regards MG
Hi

said:No, it hasn't. But is active license mandatory for CUDA to work?

License the Software and see if that helps.

Regards

MG

#4
Posted 03/31/2020 07:09 AM   
MrGRID, you was right. I'm very very confused now about how could I see nvenc working on unlicensed card. Thank you a lot for a straight way :)
MrGRID, you was right. I'm very very confused now about how could I see nvenc working on unlicensed card. Thank you a lot for a straight way :)

#5
Posted 03/31/2020 11:12 PM   
NVENC has nothing to do with CUDA. CUDA is not enabled without a license
NVENC has nothing to do with CUDA. CUDA is not enabled without a license

#6
Posted 04/03/2020 05:37 PM   
Yes, you are right. In Gstreamer nvh264enc plugin NVENC uses CUDA and I thought that it's the only method to use it, sorry.
Yes, you are right. In Gstreamer nvh264enc plugin NVENC uses CUDA and I thought that it's the only method to use it, sorry.

#7
Posted 04/07/2020 08:50 AM   
Scroll To Top

Add Reply